In this post I will explain some of the main ideas furnished in the theoretical framework we refer to as Operational Dynamical Modeling (ODM). The formal publication can be found at:

[1]

*Operational Dynamic Modeling Transcending Quantum and Classical Mechanics*, Denys I. Bondar, Renan Cabrera, Robert R. Lompay, Misha Yu. Ivanov, and Herschel A. Rabitz, Phys. Rev. Lett. 109, 190403, 2012
The early success of Lagrangian and Hamiltonian classical mechanics established the variational principle as the main tool of theoretical physics. Since then, the variational principle solidified its reputation in virtually all branches of fundamental physics and beyond. Considering such triumph, one may think that this technique could well be employed to deal with all the new challenges of theoretical physics. Nevertheless, there are important physical phenomena such as quantum decoherence and quantum dissipation that are inherently outside of the range of applicability of traditional Lagrangian and Hamiltonian treatments. The reason of this limitation is that the latter are only suitable to describe conservative systems that also maintain the quantum/classical information invariant. Therefore, systems undergoing energy dissipation and/or loss of information require an alternative approach. One such possibility is the application of stochastic processes that naturally addresses the loss of information.

In [1] we propose an alternative approach based on the crucial observation that the Ehrenfest equations can be used to model a very wide range of physical systems that can be quantum/classical and/or conservative/dissipative.

A first look at the Ehrenfest theorem

may give us the wrong impression that these equations can be easily reduced to Newton's equations; thus to classical mechanics. However, this is only true for quadratic potentials. In this case the Ehrenfest equations become a closed set of ordinary differential equations that exactly obey Newton's equation. Otherwise, there are higher order statistical moments of the position operator that prevent to turn the Ehrenfest equations into a consistent system of ordinary differential equations.

Much lesser known, the Ehrenfest equations can be written for classical mechanics in almost exactly the same form with one single critical difference: the position and momentum operators commute. Yes, classical mechanics can be expressed in the Hilbert space according to the Koopman-von Neumann mechanics, where the observables x and p commute.

Therefore, we conclude that the Ehrenfest equations shown above are compatible with both quantum and classical mechanics. In this sense, these equations transcend both quantum and classical mechanics implying that we have in hands something much more fundamental. From this perspective, the Ehrenfest equations coalesce to either quantum or classical mechanics only after we provide the algebra of the observable operators.

All this becomes really interesting when we engage with modifications of the Ehrenfest equations. For example, we could have a dissipative dynamics according to

where gamma is the dissipation constant. There is plenty of stuff in the literature and sometimes names such as quantum Brownian motion appear in this context. Nevertheless, no satisfactory quantum solution existed until we published the following paper

This solution overcomes all the shortcomings of previous proposals that appeared since the birth of quantum mechanics. In particular, the evolution is Lindbladian. This means that the quantum states maintain full quantum consistency without violating the uncertainty principle; no matter what the initial condition are and what the temperature is. In second place, the equations of motion are numerically very stable and easy to solve with the described methods in the paper.

In the near future we will present related work in the context of relativistic quantum mechanics, but there are many other opportunities that certainly go beyond physics.

Therefore, we conclude that the Ehrenfest equations shown above are compatible with both quantum and classical mechanics. In this sense, these equations transcend both quantum and classical mechanics implying that we have in hands something much more fundamental. From this perspective, the Ehrenfest equations coalesce to either quantum or classical mechanics only after we provide the algebra of the observable operators.

All this becomes really interesting when we engage with modifications of the Ehrenfest equations. For example, we could have a dissipative dynamics according to

where gamma is the dissipation constant. There is plenty of stuff in the literature and sometimes names such as quantum Brownian motion appear in this context. Nevertheless, no satisfactory quantum solution existed until we published the following paper

*Wigner–Lindblad Equations for Quantum Friction*, Denys I. Bondar, Renan Cabrera, Andre Campos, Shaul Mukamel, and Herschel A. Rabitz, J. Phys. Chem. Lett., 2016, 7 (9), pp 1632–1637This solution overcomes all the shortcomings of previous proposals that appeared since the birth of quantum mechanics. In particular, the evolution is Lindbladian. This means that the quantum states maintain full quantum consistency without violating the uncertainty principle; no matter what the initial condition are and what the temperature is. In second place, the equations of motion are numerically very stable and easy to solve with the described methods in the paper.

In the near future we will present related work in the context of relativistic quantum mechanics, but there are many other opportunities that certainly go beyond physics.

## No comments:

## Post a Comment